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Abstract:

Farnesol and the related isoprenoids, geranylgeraniol, geranylgeranyl pyrophosphate, and farnesyl
pyrophosphate, are produced in the endoplasmic reticulum of hepatocytes in mammals, and each serve
important biological functions. Of these compounds, only farnesol was shown to significantly inhibit rabbit
liver microsomal cytochrome P450 enzymes. The observed inhibition appeared to be reversible, and was not
strictly competitive, but rather mixed in nature. Of the activities examined, ethoxycoumarin de-ethylase and
diclofenac-4-hydroxylase activities were most sensitive to farnesol, with K, and K’ values between 11 and 40
uM. Caffeine-8-hydroxylation and taxol-6-hydroxylation were not inhibited at all by farnesol. Farnesol
appeared to be a P450 substrate, as well as an inhibitor, as indicated by the NADPH-dependent decrease in
farnesol concentration in microsomal incubations, and the metabolism was inhibited by CO, which pointed to
the involvement of P450 isozymes.
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Article:

Cytochrome P450 enzymes are well known for their ability to metabolize a broad range of chemical entities,
many of which are foreign to the host organism. Due to the prominent role of P450 enzymes in the metabolism
of many pharmaceutical agents and activation or deactivation of potential carcinogens, the inhibition or
induction of cytochrome P450 enzymes by xenobiotics has received considerable attention [1]. It has also been
shown that cytochrome P450 enzymes can metabolize endogenous chemicals as well, resulting in either
activation or de-activation of that particular compound. For example, all-trans retinoic acid, the active form of
vitamin A, is oxidized to 4-hydroxy and 4-oxo-retinoic acid [2], a process believed to represent de-activation. In
comparison, an area that has not been explored to a large extent is the role that endogenous chemicals may have
in attenuating cytochrome P450 activity through direct enzyme inhibition. In 1969, DiAugustine and Fouts [3]
showed that arachidonic acid was a potent inhibitor of cytochrome P450 activity in the rabbit liver, and it was
later determined that arachidonic acid was a substrate for P450 enzymes [4]. More recently, Bestervelt et al. [5]
and Kuo et al. [6] have shown that 4-hydroxynonenal, a product of lipid peroxidation, may inhibit several
different liver microsomal P450s at micromolar concentrations, and Gervasini et al. [7] recently described the
inhibition of P4502C9 by 5-hydroxytryptamine and adrenaline. These studies demonstrate the potential
significance of P450 inhibition by endogenously produced compounds.

An important class of endogenous compounds called isoprenoids, which have significant biological functions in
the areas of cell cycle regulation [8], cholesterol metabolism [9], and gene regulation [10], are produced in
nearly all eukaryotic organisms including mammals. Several of these compounds are produced in the
endoplasmic reticulum of hepatocytes and are very hydrophobic, raising the question as to the potential for
interaction between liver microsomal P450s and certain members of this class of compounds. In particular,
farnesol is a 15-carbon isoprenoid alcohol that has been implicated in gene regulation [10] and cell
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differentiation [11], via the nuclear receptors FXR and PPARa, control of cholesterol synthesis via its
interaction with HMGCoA reductase [9], and apoptosis [12]. Esterification of alcohol to the diphosphate, a so-
called “salvage reaction” that has been shown to occur in mammalian cells [13], results in farnesyl
pyrophosphate (FPP), which is the farnesyl group donor in protein prenylation reactions [8]. The analogous 20-
carbon isoprenoid alcohol, geranylgeraniol, has been implicated in apoptosis through its selective activation of
caspase-3 [14], and the corresponding diphosphate derivative, GGPP, is a prenyl group donor involved in rab
and ras-related small G-protein activation [15].

The goal of this study was to examine potential interactions between specific microsomal P450 isozymes and
the endogenous isoprenoids farnesol, FPP, geranylgeraniol, and GGPP. Using uninduced rabbit liver
microsomes, various cytochrome P450 substrates were used to probe P450 inhibition by each of the four
compounds. A reconstituted system consisting of recombinant P450,g;- A3-29, NADPH cytochrome P450
reductase and dilauroyl phosphatidylcholine (DLPC) was also examined in order to confirm the results obtained
using microsomes. Finally, GC/MS analysis was used to explore the possibility that farnesol was metabolized
by P450 enzymes in the rabbit liver microsomes, or by the reconstituted P450,g1-A3-29 system.

EXPERIMENTAL

The compounds farnesol, geranylgeraniol, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate were
purchased from Sigma Chemical, as were the substrates diclofenac, taxol, and p-nitrophenol. The standards, 4-
hydroxydiclofenac and 6-hydroxytaxol were purchased from Gentest.

Rabbit livers were purchased from Pel-Freez (Rogers, Arkansas) and rabbit liver microsomes were prepared by
a variation of a published protocol [16]. Procedures in the current study were identical to the published ones
with the exception that the final centrifugation step was carried out for 2 h at 45,0009 rather than 60 min at
100,000g. The resulting pellet from this spin was suspended in 10.0 mM Tris—acetate buffer containing 1.0 mM
EDTA and 20% glycerol. NADPH oxidation rates, protein content, and reduced-CO difference spectra were
measured using established protocols [16].

Cytochrome P450,g1-A3-29 was expressed in Escherichia coli using a clone provided by Dr. Minor Coon (The
University of Michigan, Medical School) using a published procedure [17]. The expressed enzyme was partially
purified by lysing the E. coli cells enzymatically and with a sonic dismembrator, in 30 mM phosphate buffer,
pH 7.7 containing 0.50 mM EDTA, 50 mM imidazole, and 20% glycerol. Following sonication, 1% tergitol was
added, mixed well, and the solution centrifuged at 42,0009 for 2 h. The supernatant was diluted with 30 mM
phosphate buffer, pH 7.7, containing 50 mM imidazole and 20% glycerol to give a final tergitol concentration
of 0.2%. This was loaded onto a hydroxyapatite column equilibrated in the same buffer, and washed with 5
column volumes of the same buffer without tergitol. The enzyme was eluted from the column using a minimum
volume of 400 mM potassium phosphate buffer, pH 7.4, 0.1 mM EDTA, and the sample was dialyzed to
remove imidazole. Reductase was expressed and purified by a published procedure [18] using a clone produced
by Dr. Charles Kasper (The University of Wisconsin, Madison) and provided to us by Dr. Minor J. Coon (The
University of Michigan, Medical School).

The assays used in this study have all been described previously. The oxidation of p-nitrophenol (10-100 puM)
was used to monitor Cytochrome P450,¢; activity [19]. Caffeine-N-demethylation was used to probe P450;4,
activity at concentrations between 1.0 and 10.0 mM [20]. P450;; activity was examined using a
spectrofluorometric assay involving O-de-ethylation of ethoxy coumarin (EROD) [16]. Taxol-6- hydroxylation
activity of the rabbit liver microsomes, an activity that is typically associated with the human P4502C8 isoform,
was measured using an HPLC assay, where taxol concentrations between 5 and 100 uM were used [21] and
detection of the product was at 229 nm. Diclofenac-4-hydroxylation activity, over a range of concentrations
from 40 to 120 uM, was measured for the rabbit liver microsomes using a published protocol [22]. In humans,
this reaction is catalyzed primarily by P450,cq. Finally, caffeine-8-hydroxylation was monitored using caffeine
concentrations in the range of 1-60 mM. This activity in the rabbit liver is most likely related to the P450346



isoform, by analogy with human P450344. All HPLC product analyses were performed on a Shimadzu HPLC
system with diode array detection that has been described previously [23]. An ISA Jobin Yvon-Spex
FlouroMax-2 spectrofluorimeter was used for the analysis of EROD activity.

Inhibition experiments were performed in which 5-180 uM inhibitor was included in the reaction mixtures and
activities were compared to reactions that were carried out in parallel with no inhibitor present. The inhibition
constants K, and K'; were calculated from Lineweaver—Burk plots using the following relationship:

UV = (aKn/Vmax) X (/[S]) + (0'/Vmax),

where a =1 + ([I]/K)) and o' = 1 + ([1]/K")). That the inhibition of p-nitrophenol oxidation in rabbit liver
microsomes by farnesol was reversible was determined using a procedure described by Raner et al. [24]. In this
assay, microsomes, farnesol, and NADPH were pre- incubated for 20 min at 37 °C, at which time 50 pyL of this
mixture was added to 950 pL of a solution containing p-nitrophenol and NADPH, bringing the final
concentrations to 1.0 mg/mL protein, 1.0 mM NADPH, 5.0 uM farnesol, and 100 pM p-nitrophenol, in 100 mM
phosphate buffer, pH 7.4. These activities were compared to those obtained in control experiments in which no
farnesol was included in the pre-incubation. Inhibition studies involving farnesyl pyrophosphate,
geranylgeraniol, and geranylgeranyl pyrophosphate were performed in an identical manner.

To monitor farnesol metabolism by cytochrome P450,¢;, 0.118 nmol of the recombinant enzyme was
reconstituted with approximately 0.1 nmol of partially purified P450 reductase and 35 g DLPC, and incubated
for 5 min at room temperature. To this mixture was added 100 pM farnesol, 100 mM phosphate buffer, pH 7.4,
and 1.0 mM NADPH (all final concentrations). Mixtures were incubated between 0 and 60 min at 37 °C, at
which time 50 uM (final concentration) 6-phenylhexanol was added as an internal standard, and the reaction
was quenched by addition of 3.0 mL ethyl acetate. Products were extracted twice and ethyl acetate was
evaporated under vacuum. The resulting residue was dissolved in ethyl acetate and injected onto an HP5890
Series H GC (HP-1 Crosslinked Methyl Silicone Gum, 5 m x 0.53 mm x 2.65 um) coupled with an HP 5971
Series Mass Selective Detector operating in the positive ion mode. The column temperature was set at 85 °C for
2 min, followed by increasing temperature at a rate of 10 °C/min until 230 °C was reached. Under these
conditions the farnesol eluted at 13.2 min and the internal standard appeared at 11.9 min. Peak areas for farnesol
were all normalized using the integrated area of the internal standard.

The same protocol was used for analysis of the reaction products from microsomal incubations with farnesol
and NADPH. In these experiments, 1.0 mg of microsomal protein was incubated with 100 uM farnesol for up to
60 min at 37 °C. For the quantification of farnesol, the m/z = 69 peak was integrated, and the areas were nor-
malized using the m/z = 91 peak areas of the internal standard. The individual ion peaks were selected based on
their intensities. An additional control was carried out for the 30-min incubation with microsomes in which CO
was continuously bubbled through the reaction mixture at a rate of 2.0 mL/min.

RESULTS AND DISCUSSION

In the presence of farnesol, the p-nitrophenol 3-hydroxylation activity of rabbit liver microsomes was reduced
in a concentration-dependent manner (Fig. 1). The inhibition was mixed in nature with K, and K’ values of 90
and 115 puM, respectively. The inhibition appeared to be reversible as indicated by the fact that pre-incubation
of liver microsomes with 80 uM farnesol and NADPH had no effect on the resulting p-nitrophenol oxidation
activity (data not shown). The value obtained for Km in these experiments (48 UM p-nitrophenol) was
consistent with reported values in the literature for the rabbit liver P4502E1 [19].

Several other P450-related activities in the rabbit liver microsomes were also examined with respect to
inhibition by farnesol. These included taxol-6-hydroxylation, caffeine-N-demethylation, caffeine-8-
hydroxylation, ethoxy coumarin O-de-ethylation (EROD), and diclofenac-4-hydroxylation. The Kinetic
parameters obtained for all of these assays, including KI and K~ are given in Table 1. Taxol-6-hydroxylation



and caffeine-8-hydroxylation appeared to be unaffected by farnesol at concentrations up to 160 yuM. This result
was significant because it suggested that the observed inhibitory effect of farnesol on certain other P450
activities was not due to inhibition of the reductase enzyme or disruption of the P450—reduc-
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Fig. 1. Inhibition of rabbit liver microsome-catalyzed p-nitrophenol
oxidation by farnesol. The concentration of farnesol in each of the
experiments was (H) 0 uM, (@) 45 uM, (A) 90 uM, and (@) 180 uM.

tase complex via lipophilic interactions with farnesol. Of the six activities examined, the EROD and diclofenac-
4- hydroxylation activities appeared to be most sensitive to farnesol, with KI and K~I values falling in the range
of 11-44 uM. Caffeine-N-demethylation and p-nitrophenol 3- hydroxylation in the rabbit liver microsomes
were much less sensitive to farnesol, with K; and K’ values of —100 pM or higher. Kim et al. [25] have also
examined the effects of farnesol on the activity of retinoic acid hydroxylase, a P450-catalyzed activity in rabbit
liver, and found that farnesol did not affect the activity of this specific 450 enzyme, although analogs of farnesol
were shown to inhibit the activity at low micromolar concentrations. The results from our study show that
farnesol did, in fact, inhibit certain P450-related activities in the rabbit liver, the inhibition appeared to be
reversible, and that the inhibition occurred at concentrations below 10 puM farnesol.

Whether this inhibition has any physiological significance or not depends on the concentration of farnesol
normally present in the liver cells. Although this value is very difficult to determine, due to rapid metabolism
and/ or sequestration by intracellular or extra cellular binding proteins, many of the observed biological effects
of farnesol have been shown to occur in vitro at concentrations between 20 and 80 pM, suggesting this may
represent a reasonable physiological range of concentrations. For example, FXR binding [10], the induction of
the degradation of HMG-CoA reductase [9], inhibition of cholinephosphotransferase activity [26], and
apoptosis [12] have all been linked to farnesol, and in each case, the effective concentration falls within this
range in vitro.

Three related endogenous isoprenoid compounds were also examined with respect to their ability to inhibit
certain P450 activities in the liver microsomes. The compounds tested included FPP, geranylgeraniol, and
GGPP, and the activities included p-nitrophenol 3-hydroxylation, diclofenac-4-hydroxylation, and caffeine-N-
demethylation. Essentially no inhibition of any of the P450-related activities examined was observed with any
of the three compounds (Table 2). This was somewhat surprising given structural similarity of these compounds
with farnesol. These results indicate that the alcohol function and the size of the molecule are important factors
for binding to and inhibiting the P450s. It also illustrates the very specific nature of the interaction involving
farnesol, which argues against a non-specific mode of inhibition such as the disruption of interactions between
P450s and the reductase.

Inhibition experiments were also carried out using a reconstituted P450,¢; system, and the results compared to
those for the microsome-catalyzed hydroxylation of p-nitrophenol (Table 1). As with microsomes, the inhibition
by farnesol was mixed in the reconstituted system,



Table 1
Kinetic parameters for various P450-catalyzed reactions and the effects of farnesol on activity*

Activity Ky (mM) Vnax (nmol/min/mg) K1 (uM) K{ (uM)
In rabbit liver microsomes

p-Nitrophenol oxidation 0.048 1.8 90 115
Ethoxycoumarin O-de-ethylation 3.0x 10~ 0.070 11 44
Diclofenac-4-hydroxylation 0.205 2.0 21 21
Caffeine-N-demethylation 1.8 0.080 137 160
Caffeine-8-hydroxylation® 25 3.2 NI NI
Taxol-6-hydroxylation®¢ 0.016 ND NI NI

In reconstituted P450;g,-A3-27 system
p-Nitrophenol oxidation 0.042 2.5 66 64

*Values represent the average of three separate trials with a standard deviation of less than 10%.
YNI indicates no inhibition was observed in the 8-hydroxylation of caffeine and 6-hydroxylation of taxol.
°ND indicates that the actual V,, was not determined due to degradation of the standard 6-hydroxy taxol.

Table 2

Inhibition of different P450 activities in rabbit liver microsomes and a reconstituted P450,g; system by four different isoprenoids®
Activity Farnesol (80 uM) Geranylgeraniol (80 uM) FPP (80 uM) GGPP (80 uM)

% inhibition % inhibition % inhibition % inhibition

In rabbit liver microsomes
p-Nitrophenol hydroxylation (30 pM) 60+ 5 041 042 10+5
Diclofenac-4-hydroxylation (0.20 mM) 4542 241 0+1 1£1
Caffeine-N-demethylation (2.0 mM) 35+2 0+1 0+1 0+1

In reconstituted P450,5,-43-27
p-Nitrophenol hydroxylation (45 uM) 43+3 242 5+3 3+1

2Errors are based on the average deviation from the mean for three or more trials.

and the Kinetic parameters were reasonably consistent with those observed for microsomal inhibition, although
the inhibition constants determined in the reconstituted system were lower than those observed in the
microsomes. One possible explanation for this is that since farnesol is very hydrophobic, it may be sequestered
to some extent through interaction with the membranous material present in the microsomes. This would have
the effect of lowering the free farnesol in solution, and consequently the KI would increase. Regardless, the
experiments show very clearly that farnesol acts as a P4502E1 inhibitor both in microsomes and a reconstituted
system with similar inhibition characteristics.

To determine whether the farnesol was just an inhibitor of rabbit liver microsomal P450s or a potential
competing substrate, we used GC/MS analysis to monitor farnesol concentration. In the reconstituted P450,¢;
system there was no detectable decrease in the farnesol concentration with time, and no observable product
peaks in the presence of NADPH that were not present in controls. This suggested that farnesol was not
metabolized by rabbit liver P450,¢;. In microsomal incubations, however, farnesol metabolism was observed,
and the metabolism was time- and NADPH-dependent (Fig. 2). After a 30-min incubation with 1 mg of
microsomal protein, approximately 50% of the farnesol had been metabolized. The metabolism
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Fig. 2. Time-dependent metabolism of farnesol in rabbit liver micro-
somes in the presence of NADPH. Also shown are the results of
identical reactions in the absence of NADPH after a 60-min incuba-
tion, and in the presence of CO after a 30-min incubation. Reactions
were terminated by addition of ethyl acetate, and samples were ana-
lyzed by GC/MS and signals normalized using the internal standard
6-phenylhexanol.

could be inhibited by CO indicating the likely involvement of P450 isozymes. No additional peaks were
detected in the ethyl acetate extracts from the reactions, indicating the products were most likely more
hydrophilic in nature. Vaidya et al. [27] reported that the squalene synthase inhibitor, zaragozic acid, when
given to mice resulted in massive production of dicarboxylic acids presumably via metabolism of farnesol. To
determine whether carboxylic acid products were formed in the reaction with microsomes, the aqueous phase
from the initial ethyl acetate extraction was acidified and re-extracted with ethyl actetate. Once again, GC/MS
analyses of the extracts from reactions carried out in the absence and presence of NADPH were unable to detect
NADPH-dependent products. Although studies are currently underway to determine the identities of any
metabolites formed in this reaction, we tentatively conclude that P450 enzymes convert farnesol to more
hydrophilic non-carboxylic acid products in rabbit liver microsomes.

In summary, this study shows very clearly that farnesol, but not the related terpenoids geranylgeraniol, FPP, or
GGPP, is an inhibitor of certain rabbit liver microsomal P450 enzymes. The inhibition appears to be reversible
and non-competitive, and occurs at farnesol concentrations that may have physiological significance,
particularly under conditions that can result in elevated farnesol production. It appears that farnesol is metab-
olized by constitutive rabbit liver microsomal P450 enzymes to more polar products that cannot be extracted
into ethyl acetate even under acidic conditions. These findings raise the possibility that endogenously produced
farnesol could play a role in the attenuation of cytochrome P450 activity under certain conditions, and that
P450s may have a critical role in the metabolism of this biologically significant molecule.
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